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A Nodal Basis for C' Piecewise Polynomials 
of Degree n 2 5 

By John Morgan and Ridgway Scott 

Abstract. A basis for the space of C1 piecewise polynomials in two variables of degree 
n > 5 is constructed. The basis is parametrized by "nodal variables," namely, the values 

and derivatives of the basis functions at a discrete set of points. 

Let Hl be a bounded domain in R2 such that afL consists of a finite number 
of nonintersecting polygonal arcs (by a polygonal arc, we mean a continuous curve 
consisting of a finite number of line segments), and let T be a rectilinear triangula- 
tion of H (i.e., a triangulation with straight edges). Denote by Sn = Sn(Hl, T) the 
subspace of C1(Hl) consisting of functions whose restriction to each triangle is a 
polynomial of degree 6 n (the space of C1 piecewise polynomials of degree n). 
Strang [3] conjectured a formula for the dimension of Sn (in terms of the number 
of triangles, edges, and vertices in T), and we mention later some results of our 
study [2] of the dimension of Sn. But the main purpose of this note is to describe 
the structure of Sn completely for n > 5 by exhibiting a nodal basis for Sn. This 
basis makes Sn convenient to use for the approximation of solutions of differential 
equations via the finite element method (see, e.g., [1], [4]). By a nodal basis, we 
mean that the functions in Sn are determined by their values and derivatives at 
points in H (these are called nodal values). The nodal values describing Sn are 

(1) the value and x and y derivatives at each vertex in T, 
(2) the value at each of n - 5 distinct points in the interior of each edge, 
(3) the (edge) normal derivative at each of n - 4 distinct points in the interior of 

each edge (the points may coincide with those of (2)), and 
(4) the value at %(n - 4)(n - 5) distinct points in the interior of each triangle, 

chosen so that if a polynomial of degree n - 6 vanishes at all the points, it vanishes 
identically. 

The remaining nodal values are more complicated to describe, as they involve 
second derivatives at the vertices. Suppose el is an edge in T, v is one of its vertices 
and f E Sn . By the "second el derivative of f at v", we mean ae1 ae 1(f r)(v), where 
ae1 is differentiation in the el direction away from v and r is a triangle with el as an 
edge. There are two such triangles, and the value ael ae1 (f I'r)(v) is independent of the 
choice for f E Sn Similarly,if ande2 are two edges of a triangle rin T, we define choce or ~ n, Similarly, if e 1and e 

the "el, e2 cross derivative of f at v" to be ae 1 ae2(f Ir)(v) (here v = el n e2). Refer- 
ring to Fig. 1, we have 

ae1 ae2(fIt)() = 
ael ae (f Io)(v) = ae 1ae2(f Ir i)(V) 
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FIGURE 1 

for f E S,,. Returning to our list of nodal values, we add 
(5) one cross derivative at each vertex (i.e., for each vertex, choose adjacent 

edges el, e2 emanating from it, and put in the el, e2 cross derivative at that vertex), 
and 

(6) at each vertex, the second edge derivative for all the edges meeting there, 
with one exception: if the vertex is an interior vertex (i.e., not on an), we omit one of 
the second edge derivatives, where the omitted edge is chosen so that its two adjacent 
edges are not collinear (if there are no such edges, no omission is made). 

An interior vertex for which the adjacent edges of each edge are collinear is called 
singular; the star of such a vertex is simply a convex quadrilateral with the diagonals 
drawn in. 

Let us count the number D of nodal values listed above. Let T be the number 
of triangles, E (resp. EO) be the number of edges (resp. interior edges), and V (resp. 

VO, a) be the number of vertices (resp. interior vertices, singular vertices) in T. Then 

D = 3V + (n - 5)E + (n - 4)E 

+ %(n - 4)(n - 5)T + V + (2E - VO + a). 

Combining and using the obvious relations 

E-Eo = V- VO and 3T = E + E, 

we obtain the formula 

(I) D = %(n + lXn + 2)T- (2n + l)E0 + 3Vo a. 

This is the formula for the dimension of Sn conjectured by Strang [3], except that 
singular vertices were not explicitly mentioned. Let us number the nodal values 1, 2, 
. . . , D. Then we have the following: 
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THEOREM. There is a basis {Ip1}J= 1 of Sn(H, T) (n > 5) where each epo has the 

ith nodal value equal to 1 and all the other nodal values zero. 
Remark. It is important for applications to know how large the support of each 

basis function is. If the jth node is one of type 1, 5, or 6, involving the value or a 
derivative at a vertex, then fp is supported in the star of that vertex. For the edge 
nodes (2 or 3), the support of the associated basis function is the union of the two 
triangles sharing that edge. The basis function for a 4 node is supported in the relevant 
triangle. 

Proof of the Theorem. The nodal values give us a map from Sn to RD, and we 
must show that it is an isomorphism. We begin by showing that it is injective. Suppose 

that f E Sn has all nodal values zero. Then we shall show that f 0. Looking locally 
at one triangle for the moment, a polynomial of degree n is completely determined by 
its value, first and second derivatives at the three vertices plus the relevant quantities 

at edge and interior nodes as in 2, 3, and 4. Thus we need to show that, in addi- 
tion to all nodal values being zero, all remaining second derivatives at vertices are 
zero. We determine these by looking at the star of a vertex in T. Referring to 

Fig. 2, suppose we know ae ae2(f r1v)() 

e 

3 

e\ 

FIGURE 2 

and ae2 ae2 (fIr1Xv). Then as remarked above, we already know ae ae2(fI1r2Xu) and 

ae2ae2(f 1r2XV) (they are the same). We wish to calculate ae2ae3(f 1r2Xv). The an- 

swer is derived by writing ae3 in terms of ae, and ae2, namely 

sin 02 /sin 02 
a3 sin (91 ael + cos 01 + cos 02)ae e 3 sin 01 e1 \sin 0 1 2 e2 

Applying ae2, we find 

sin 02 
aeae(32)(f ) = - sin 0V ae aef 1r1f(v) 2 sin 0 1~~ 1e2 

(II) 
(sin 02 

cos 01 + cos 02 ae ae2(f 1Ir(U). 

Thus, knowing one cross derivative plus all but one second edge derivative at a vertex, 
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we can determine all the cross derivatives (work clockwise and counter-clockwise from 
the known cross derivative, stopping upon arrival at the unknown second edge derivative 
or a boundary edge). All that is left is to determine the unknown second edge deriva- 
tive at a nonsingular interior vertex. We invert (II) to obtain 

Csc lae ae 2(fITI)(V) + CSC 02a,e2ae3(fIT2)(V) 
(III) ae2 ae2(f IT)() = cot 01 + cot 02 

Our requirement that el and e3 not be collinear means that the denominator is non- 
zero, so the remaining second edge derivative is determined. When all of the nodal 
values for f E Sn are zero, the above argument shows that all second derivatives at each 
vertex are zero. Thus f 0. Also, when the nodal values for f are zero locally, f 0 
in the relevant triangles, proving the Remark about support of the basis functions. 

We now show that the nodal value map S,- RD is onto. Given a set of nodal 
values, we first construct a piecewise polynomial triangle by triangle (not necessarily 
Cl) by using the formulae above to define the remaining second derivatives at the ver- 
tices of each triangle. What we must check is that a function f so constructed is C1. 
Suppose r1 and T2 are two triangles in T sharing an edge e. f is Cl iff f 1 f 1f 112 
vanishes to second order on e for all such ri. The one-variable polynomial (f'r, -f 12))e 
vanishes at the endpoints of e to third order plus at n - 5 other points, hence 
it is zero. Denoting by a e the normal derivative to e, we have (1eifI-l - aelfr2)le 
equal to zero at the endpoints plus at n - 4 other points. In addition, we must show 
that 

(IV) ae(alf Ir1 - ae1f IT2) 0 

at the endpoints of e. By our construction, we have aeae'flr, - aeae'fl,r2 = 0 there, 
where e' is an edge adjacent to e. Since also aeaeflr, - aeaeal 2 = 0, we recover (IV) 
by writing a 1 in terms of ae and a.e. Since (a efI1, - ae fIr2)Ie is a polynomial of 
degree n - 1, it must be 0. Thus f is C1, and the theorem is complete. 

Remark. If the number of edges meeting at a nonsingular interior vertex is odd, 
it is possible to replace the cross derivative at that vertex with the remaining second 
edge derivative, and still have a nodal basis. (Eq. (11) allows us to compute all cross 
derivatives: starting at TI work around v until returning to T, thus obtaining an equa- 
tion for the el, e2 cross derivative in terms of all second edge derivatives at v.) In 
either case, Eqs. (II) and (III) (via the arguments in the proof above) allow us to deter- 
mine explicitly the nodal basis functions {<p} for computational purposes. 

Further Results. In [2], we prove that (I) gives the dimension of S(HI, T) for 
n > 4, and we construct a nodal basis for n = 4, but it is defined in a global fashion 
rather than a local one, as was done here. For n = 3, 2,* we verify (l) under increas- 
ingly more stringent requirements on T. For n = 2, we construct an example where 
(I) does not give the correct dimension. 

*The cases n 0, 1 are trivial. 
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